Tuesday, January 22, 2013

1301.4581 (P. Adamson et al.)

Electron neutrino and antineutrino appearance in the full MINOS data
sample
   [PDF]

P. Adamson, I. Anghel, C. Backhouse, G. Barr, M. Bishai, A. Blake, G. J. Bock, D. Bogert, S. V. Cao, D. Cherdack, S. Childress, J. A. B. Coelho, L. Corwin, D. Cronin-Hennessy, J. K. de Jong, A. V. Devan, N. E. Devenish, M. V. Diwan, C. O. Escobar, J. J. Evans, E. Falk, G. J. Feldman, M. V. Frohne, H. R. Gallagher, R. A. Gomes, M. C. Goodman, P. Gouffon, N. Graf, R. Gran, K. Grzelak, A. Habig, S. R. Hahn, J. Hartnell, R. Hatcher, A. Himmel, A. Holin, J. Hylen, G. M. Irwin, Z. Isvan, D. E. Jaffe, C. James, D. Jensen, T. Kafka, S. M. S. Kasahara, G. Koizumi, M. Kordosky, A. Kreymer, K. Lang, J. Ling, P. J. Litchfield, P. Lucas, W. A. Mann, M. L. Marshak, M. Mathis, N. Mayer, M. M. Medeiros, R. Mehdiyev, J. R. Meier, M. D. Messier, W. H. Miller, S. R. Mishra, S. Moed Sher, C. D. Moore, L. Mualem, J. Musser, D. Naples, J. K. Nelson, H. B. Newman, R. J. Nichol, J. A. Nowak, J. P. Ochoa-Ricoux, J. O'Connor, W. P. Oliver, M. Orchanian, R. B. Pahlka, J. Paley, R. B. Patterson, G. Pawloski, S. Phan-Budd, R. K. Plunkett, X. Qiu, A. Radovic, B. Rebel, C. Rosenfeld, H. A. Rubin, M. C. Sanchez, J. Schneps, A. Schreckenberger, P. Schreiner, R. Sharma, A. Sousa, N. Tagg, R. L. Talaga, J. Thomas, M. A. Thomson, G. Tinti, R. Toner, D. Torretta, G. Tzanakos, J. Urheim, P. Vahle, B. Viren, A. Weber, R. C. Webb, C. White, L. Whitehead, S. G. Wojcicki, T. Yang, R. Zwaska
We report the results of a search for $\nu_e$ and $\bar{\nu}_e$ appearance in $\nu_\mu$ and $\bar{\nu}_\mu$ beams using the full MINOS data sample. This analysis uses an exposure of $10.6\times10^{20}$ ($3.3\times10^{20}$) protons-on-target taken with a $\nu$ ($\bar{\nu}$) beam mode and is the first accelerator long-baseline search for $\bar{\nu}_\mu\rightarrow\bar{\nu}_e$. With the $\nu_e$ and $\bar{\nu}_e$ data, we probe $\theta_{13}$, $\delta$, and the mass hierarchy. Assuming a normal (inverted) mass hierarchy, $\delta$ = 0, and $\theta_{23}$ $<$ $\frac{\pi}{4}$, we set a constraint of 0.01 (0.03) $<$ 2sin$^2(2\theta_{13})$sin$^2(\theta_{23})$ $<$ 0.12 (0.18) at 90% C.L. with the best-fit value of 2sin$^2(2\theta_{13})$sin$^2(\theta_{23})$ $=$ $0.051^{+0.038}_{-0.030}$ ($0.093^{+0.054}_{-0.049}$).
View original: http://arxiv.org/abs/1301.4581

No comments:

Post a Comment