Monday, March 5, 2012

1203.0370 (Ling Yuan et al.)

$D^\star_{s1}(2700)^\pm$ and $D^\star_{sJ}(2860)^\pm$ revisited within
the $^3P_0$ model
   [PDF]

Ling Yuan, Bing Chen, Ailin Zhang
The strong decays of $D^\star_{s1}(2700)^\pm$ and $D^\star_{sJ}(2860)^\pm$ are investigated within the $^3P_0$ model. It is found that the interpretation of these two states depends on the mixing schemes and the ways of choices of the harmonic oscillator parameter $\beta$. If $D^\star_{s1}(2700)^\pm$ and $D^\star_{sJ}(2860)^\pm$ are two pure states, $D^\star_{s1}(2700)^\pm$ seems impossibly the $2^3S_1$ $D_s$, but may be the $1^3D_1$ $D_s$. $D^\star_{sJ}(2860)^\pm$ may be the $1^3D_3$. If there is mixing between the $2^3S_1$ and $1^3D_1$, $D^\star_{s1}(2700)^\pm$ may be the mixed $1^-$ state with a small mixing angle in the case of a special $\beta$ for each meson, and $D^\star_{sJ}(2860)^\pm$ is the orthogonal partner of $D^\star_{s1}(2700)^\pm$; $D^\star_{s1}(2700)^\pm$ may also be the mixed $1^-$ state with a large mixing angle based on a universal $\beta$ for all mesons, and $D^\star_{sJ}(2860)^\pm$ seems impossibly the orthogonal partner of $D^\star_{s1}(2700)^\pm$. Other uncertainties related to the choices of constituent quark masses and phase spaces are also explored.
View original: http://arxiv.org/abs/1203.0370

No comments:

Post a Comment