Wei Chao, Michael J. Ramsey-Musolf
We consider a simple extension of the Standard Model providing dark matter and a TeV-scale seesaw mechanism that also allows for viable leptogenesis. In addition to the Standard Model degrees of freedom, the model contains a neutrinophilic Higgs doublet, a scalar singlet, and six singlet fermions (including three right-handed Majorana neutrinos) that are charged under a local $U(1)^\prime$ gauge symmetry. We show how the $U(1)^\prime$ charge assignments and the choice of scalar potential can lead to a TeV-scale seesaw mechanism and $\mathcal{O}(1)$ neutrino Yukawa couplings in a straightforward way. While this scenario has all the ingredients one would expect for significant experimental signatures, including several new TeV scale degrees of freedom, we find that most distinctive features associated with neutrino mass generation, leptogenesis and the dark sector are likely to remain inaccessible in the absence of additional lepton flavor symmetries.
View original:
http://arxiv.org/abs/1212.5709
No comments:
Post a Comment