Kenzo Ishikawa, Yutaka Tobita
In this II, a probability to detect the neutrino produced in a high-energy pion decay is shown to receive the large finite-size correction. The neutrino interacts extremely weakly with matters and is described with a many-body wave function together with the pion and charged lepton. This wave function slowly approaches to an asymptotic form, which is probed by the neutrino. The whole process is described by an S-matrix of a finite-time interval, which couples with states of non-conserving kinetic energy, and the final states of a broad spectrum specific to a relativistic invariant system contribute to the positive semi-definite correction similar to diffraction of waves through a hole. This diffraction component for the neutrino becomes long range and stable under changes of the pion's energy. Moreover, it has a universal form that depends on the absolute neutrino mass. Thus a new method of measuring the absolute neutrino mass is suggested.
View original:
http://arxiv.org/abs/1209.5586
No comments:
Post a Comment