Sunday, September 23, 2012

0603079 (Andrzej J. Buras et al.)

Charm Quark Contribution to K+ -> pi+ nu anti-nu at
Next-to-Next-to-Leading Order
   [PDF]

Andrzej J. Buras, Martin Gorbahn, Ulrich Haisch, Ulrich Nierste
We calculate the complete NNLO QCD corrections to the charm contribution of the rare decay K+ -> pi+ nu nu-bar. We encounter several new features, which were absent in lower orders. We discuss them in detail and present the results for the 2-loop matching conditions of the Wilson coefficients, the 3-loop anomalous dimensions, and the 2-loop matrix elements of the relevant operators that enter the NNLO renormalization group analysis of the Z-penguin and the electroweak box contribution. The inclusion of the NNLO QCD corrections leads to a significant reduction of the theoretical uncertainty from 9.8% down to 2.4% in the relevant parameter Pc, implying the leftover scale uncertainties in BR(K+ -> pi+ nu nu-bar) and in the determination of |V_td|, sin(2 beta), and gamma from the K -> pi nu nu system to be 1.3%, 1.0%, 0.006, and 1.2 degrees, respectively. For the charm quark MSbar mass mc=(1.30+-0.05) GeV and |V_us|= 0.2248 the NLO value Pc=0.37+-0.06 is modified to Pc=0.38+-0.04 at the NNLO level with the latter error fully dominated by the uncertainty in mc. We present tables for Pc as a function of mc and alphas(MZ) and a very accurate analytic formula that summarizes these two dependences as well as the dominant theoretical uncertainties. Adding the recently calculated long-distance contributions we find BR(K+ -> pi+ nu nu-bar)=(8.0+-1.1)*10^-11 with the present uncertainties in mc and the Cabibbo-Kobayashi-Maskawa elements being the dominant individual sources in the quoted error. We also emphasize that improved calculations of the long-distance contributions to K+ -> pi+ nu nu-bar and of the isospin breaking corrections in the evaluation of the weak current matrix elements from K+ -> pi0 e+ nu would be valuable in order to increase the potential of the two golden K -> pi nu nu decays in the search for new physics.
View original: http://arxiv.org/abs/0603079

No comments:

Post a Comment