M. Ablikim, M. N. Achasov, D. J. Ambrose, F. F. An, Q. An, Z. H. An, J. Z. Bai, Y. Ban, J. Becker, N. Berger, M. Bertani, J. M. Bian, E. Boger, O. Bondarenko, I. Boyko, R. A. Briere, V. Bytev, X. Cai, A. Calcaterra, G. F. Cao, J. F. Chang, G. Chelkov, G. Chen, H. S. Chen, J. C. Chen, M. L. Chen, S. J. Chen, Y. Chen, Y. B. Chen, H. P. Cheng, Y. P. Chu, D. Cronin-Hennessy, H. L. Dai, J. P. Dai, D. Dedovich, Z. Y. Deng, A. Denig, I. Denysenko, M. Destefanis, W. M. Ding, Y. Ding, L. Y. Dong, M. Y. Dong, S. X. Du, J. Fang, S. S. Fang, L. Fava, F. Feldbauer, C. Q. Feng, R. B. Ferroli, C. D. Fu, J. L. Fu, Y. Gao, C. Geng, K. Goetzen, W. X. Gong, W. Gradl, M. Greco, M. H. Gu, Y. T. Gu, Y. H. Guan, A. Q. Guo, L. B. Guo, Y. P. Guo, Y. L. Han, X. Q. Hao, F. A. Harris, K. L. He, M. He, Z. Y. He, T. Held, Y. K. Heng, Z. L. Hou, H. M. Hu, J. F. Hu, T. Hu, B. Huang, G. M. Huang, J. S. Huang, X. T. Huang, Y. P. Huang, T. Hussain, C. S. Ji, Q. Ji, X. B. Ji, X. L. Ji, L. K. Jia, L. L. Jiang, X. S. Jiang, J. B. Jiao, Z. Jiao, D. P. Jin, S. Jin, F. F. Jing, N. Kalantar-Nayestanaki, M. Kavatsyuk, W. Kuehn, W. Lai, J. S. Lange, J. K. C. Leung, C. H. Li, Cheng Li, Cui Li, D. M. Li, F. Li, G. Li, H. B. Li, J. C. Li, K. Li, Lei Li, N. B. Li, Q. J. Li, S. L. Li, W. D. Li, W. G. Li, X. L. Li, X. N. Li, X. Q. Li, X. R. Li, Z. B. Li, H. Liang, Y. F. Liang, Y. T. Liang, G. R. Liao, X. T. Liao, B. J. Liu, B. J. Liu, C. L. Liu, C. X. Liu, C. Y. Liu, F. H. Liu, Fang Liu, Feng Liu, H. Liu, H. B. Liu, H. H. Liu, H. M. Liu, H. W. Liu, J. P. Liu, K. Y. Liu, Kai Liu, Kun Liu, P. L. Liu, S. B. Liu, X. Liu, X. H. Liu, Y. Liu, Y. B. Liu, Z. A. Liu, Zhiqiang Liu, Zhiqing Liu, H. Loehner, G. R. Lu, H. J. Lu, J. G. Lu, Q. W. Lu, X. R. Lu, Y. P. Lu, C. L. Luo, M. X. Luo, T. Luo, X. L. Luo, M. Lv, C. L. Ma, F. C. Ma, H. L. Ma, Q. M. Ma, S. Ma, T. Ma, X. Y. Ma, Y. Ma, F. E. Maas, M. Maggiora, Q. A. Malik, H. Mao, Y. J. Mao, Z. P. Mao, J. G. Messchendorp, J. Min, T. J. Min, R. E. Mitchell, X. H. Mo, C. Morales Morales, C. Motzko, N. Yu. Muchnoi, Y. Nefedov, C. Nicholson, I. B. Nikolaev, Z. Ning, S. L. Olsen, Q. Ouyang, S. Pacetti, J. W. Park, M. Pelizaeus, H. P. Peng, K. Peters, J. L. Ping, R. G. Ping, R. Poling, E. Prencipe, C. S. J. Pun, M. Qi, S. Qian, C. F. Qiao, X. S. Qin, Y. Qin, Z. H. Qin, J. F. Qiu, K. H. Rashid, G. Rong, X. D. Ruan, A. Sarantsev, B. D. Schaefer, J. Schulze, M. Shao, C. P. Shen, X. Y. Shen, H. Y. Sheng, M. R. Shepherd, X. Y. Song, S. Spataro, B. Spruck, D. H. Sun, G. X. Sun, J. F. Sun, S. S. Sun, X. D. Sun, Y. J. Sun, Y. Z. Sun, Z. J. Sun, Z. T. Sun, C. J. Tang, X. Tang, E. H. Thorndike, H. L. Tian, D. Toth, M. Ullrich, G. S. Varner, B. Wang, B. Q. Wang, K. Wang, L. L. Wang, L. S. Wang, M. Wang, P. Wang, P. L. Wang, Q. Wang, Q. J. Wang, S. G. Wang, X. F. Wang, X. L. Wang, Y. D. Wang, Y. F. Wang, Y. Q. Wang, Z. Wang, Z. G. Wang, Z. Y. Wang, D. H. Wei, P. Weidenkaff, Q. G. Wen, S. P. Wen, M. Werner, U. Wiedner, L. H. Wu, N. Wu, S. X. Wu, W. Wu, Z. Wu, L. G. Xia, Z. J. Xiao, Y. G. Xie, Q. L. Xiu, G. F. Xu, G. M. Xu, H. Xu, Q. J. Xu, X. P. Xu, Y. Xu, Z. R. Xu, F. Xue, Z. Xue, L. Yan, W. B. Yan, Y. H. Yan, H. X. Yang, T. Yang, Y. Yang, Y. X. Yang, H. Ye, M. Ye, M. H. Ye, B. X. Yu, C. X. Yu, J. S. Yu, L. Yu, S. P. Yu, C. Z. Yuan, W. L. Yuan, Y. Yuan, A. A. Zafar, A. Zallo, Y. Zeng, B. X. Zhang, B. Y. Zhang, C. C. Zhang, D. H. Zhang, H. H. Zhang, H. Y. Zhang, J. Zhang, J. G. Zhang, J. Q. Zhang, J. W. Zhang, J. Y. Zhang, J. Z. Zhang, L. Zhang, S. H. Zhang, T. R. Zhang, X. J. Zhang, X. Y. Zhang, Y. Zhang, Y. H. Zhang, Y. S. Zhang, Z. P. Zhang, Z. Y. Zhang, G. Zhao, H. S. Zhao, J. W. Zhao, K. X. Zhao, Lei Zhao, Ling Zhao, M. G. Zhao, Q. Zhao, S. J. Zhao, T. C. Zhao, X. H. Zhao, Y. B. Zhao, Z. G. Zhao, A. Zhemchugov, B. Zheng, J. P. Zheng, Y. H. Zheng, Z. P. Zheng, B. Zhong, J. Zhong, L. Zhou, X. K. Zhou, X. R. Zhou, C. Zhu, K. Zhu, K. J. Zhu, S. H. Zhu, X. L. Zhu, X. W. Zhu, Y. M. Zhu, Y. S. Zhu, Z. A. Zhu, J. Zhuang, B. S. Zou, J. H. Zou, J. X. Zuo
Using a sample of 106 million $\psi^\prime$ events collected with the BESIII detector at the BEPCII storage ring, we have made the first measurement of the M1 transition between the radially excited charmonium $S$-wave spin-triplet and the radially excited $S$-wave spin-singlet states: $\psi^\prime\to\gamma\eta_c^\prime$. Analyses of the processes $\psi^\prime\to \gamma\eta_c^\prime$ with $\eta_c^\prime\to \K_S^0 K\pi$ and $K^+K^-\pi^0$ gave an $\eta_c^\prime$ signal with a statistical significance of greater than 10 standard deviations under a wide range of assumptions about the signal and background properties. The data are used to obtain measurements of the $\eta_c^\prime$ mass ($M(\eta_c^\prime)=3637.6\pm 2.9_\mathrm{stat}\pm 1.6_\mathrm{sys}$ MeV/$c^2$), width ($\Gamma(\eta_c^\prime)=16.9\pm 6.4_\mathrm{stat}\pm 4.8_\mathrm{sys}$ MeV), and the product branching fraction ($\BR(\psi^\prime\to \gamma\eta_c^\prime)\times \BR(\eta_c^\prime\to K\bar K\pi) = (1.30\pm 0.20_\mathrm{stat}\pm 0.30_\mathrm{sys})\times 10^{-5}$). Combining our result with a BaBar measurement of $\BR(\eta_c^\prime\to K\bar K \pi)$, we find the branching fraction of the M1 transition to be $\BR(\psi^\prime\to\gamma\eta_c^\prime) = (6.8\pm 1.1_\mathrm{stat}\pm 4.5_\mathrm{sys})\times 10^{-4}$.
View original:
http://arxiv.org/abs/1205.5103
No comments:
Post a Comment