Pier Paolo Giardino, Kristjan Kannike, Martti Raidal, Alessandro Strumia
We perform a phenomenological fit to all ATLAS, CMS, CDF and D0 Higgs boson data available after Moriond 2012. We allow all Higgs boson branching fractions, its couplings to standard model particles as well as to an hypothetical invisible sector to vary freely, and determine their current favourite values. The standard model Higgs boson with a mass 125 GeV correctly predicts the average observed rate and provides an acceptable global fit to data. However, better fits are obtained by non-standard scenarios that reproduce anomalies in the present data (more \gamma\gamma and less WW signals than expected) such as modified rates of loop processes or partial fermiophobia. We find that present data disfavours Higgs boson invisible decays. We consider implications for the standard model, for supersymmetric and partially fermiophobic Higgs bosons, and for dark matter models.
View original:
http://arxiv.org/abs/1203.4254
No comments:
Post a Comment